If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2+0.9y-9=0
a = 7; b = 0.9; c = -9;
Δ = b2-4ac
Δ = 0.92-4·7·(-9)
Δ = 252.81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.9)-\sqrt{252.81}}{2*7}=\frac{-0.9-\sqrt{252.81}}{14} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.9)+\sqrt{252.81}}{2*7}=\frac{-0.9+\sqrt{252.81}}{14} $
| 20-5r=29-5r | | 8=16÷y | | 4.9^2-1.6t-57=0 | | (10-6x)/2=11 | | 400÷2x=244 | | 3x+20+5x-50=35 | | -100p-250p=1400 | | 2x+10x=12 | | –4x-6+x=–2x+x-10 | | 9(2x+1)^2-42(2x+1)=-49 | | ((x+3)/6)-((2x-3)/3)=-2 | | –4x–6+x=–2x+x–10 | | -4.9^2-1.6t+57=0 | | 0=x-6x+1 | | 8x^2=10x+25 | | (2x/3)+(4)=(14/3) | | 6b2+-4b3=1 | | 16+4x=12-14x | | 5t^2-t-100=0 | | -3(r-12)+15=2(r-2) | | -2x+8=-2x-8 | | 96=-31a(7+3a) | | -8r+4=-15-4r | | 7-6/7y=10 | | r+1=1+7r-2r | | -4(5-4r)=40+4r | | 10-2(x+1)=8/2 | | 7f/11=7/1 | | 10-2(x+1)=2/2 | | 2.x+5=9 | | -3(2y-2)=-24 | | -36-8r=-3(8r-4) |